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Abstract-This paper presents a nonlinear extension of the affine
transform as used in the iterated function systems (IFS) to com-
press signals and data. Compared with∅ien and Nårstad’s
orthogonal transform with compression ratio of 6.0:1 for the
electrocardiogram (ECG) signal, the nonlinear approach pro-
duces higher compression ratios of 10.2:1, and is more flexible
in finding the corresponding strange attractor of the ECG sig-
nal. It can model the QRS complex of the ECG signal well,
which has been a problem for the affine transform in fractal
compression.
Keywords-ECG, strange attractor, IFS, affine transform.

I. INTRODUCTION

Data compression based on fractals commenced about
ten years ago [1]. More specifically, the iterated function sys-
tems (IFS) approach to data compression has been developed
based on the fundamental property of fractal objects: self-
similarity. Thus, our discussion begins from a fractal signal.
A random discrete process defined for all integers,

, is said to be statistically self-similar if its statis-
tics are invariant to its dilations and contractions. Thus,
is statistically self-similar with a parameterD if for any real

, it obeys the following scaling relation [2]

(1)

where  denotes equality in a statistical sense.
To employ the multiplicative (rather than additive)

invariance of the dilation and contraction of the fractal sig-
nal, Barnsley proposed a fractal compression technique, the
IFS, which uses an affine transform to map the process onto
itself [1]. Such an affine transform,W, for a one-dimensional
process  is defined as

(2)

wherea, c, d, e, andf are the transform coefficients.
The IFS compression technique partitions the process

into domain blocks and range blocks, and finds a set of affi
transforms between the domain blocks and range bloc
Computational complexity, compression ratio, reconstru
tion quality of the signal, and convergence are importa
issues in the IFS approach [1]. All these issues are related
the quality of the matching between the blocks which resu
in the affine transform. The role of the affine transform is
fit the range blocks with the domain blocks optimally. Th
compression ratio and reconstruction quality are decided
the optimization algorithm of the affine transform. The cu
rent transform in the IFS described by (2) is a linear affin
transform. Its fitting capability is not satisfactory for signal
such as image, speech, and electrocardiogram (ECG), wh
have nonlinear characteristics. In addition, the original IF
search algorithm is very time consuming due to the dire
comparison of a large number of domain blocks [3]. A
order of magnitude improvement in the search time w
achieved through a frequency-sensitive neural-netwo
search [4] [5]. It is necessary to find another model for th
IFS to improve compression performance and reduce
search time.

A more flexible way to model complicated signals is t
use a nonlinear transform. We use a polynomial expansion
model the ECG signal because it is an efficient way to mod
arbitrary functions. Convergence is an important issue in t
signal reconstruction of the IFS for the proposed transfor
Although we have not proved it in theory, our experimen
show that the new extended affine transform gives conv
gent results. This nonlinear model also demonstrates
flexibility in modelling various complexities in the ECG sig-
nal. We shall show that it can give much better reconstru
tion quality under the same compression ratio, as compa
with a corresponding linear model. The difficulty in mode
ling the QRS complex in ECG signals [6] is solved with th
proposed technique. The new transform combined with co
plexity measure can reduce the computational complex
[7]. Experimental results are presented and compared w
the standard IFS and other techniques.

For clarity and completeness, a continuous ECG sign
is first obtained from multi-channel sensors, then amplifie
and filtered to satisfy the Nyquist sampling theorem, the
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sampled to form a discrete signal, and finally quantized to
form a digital ECG signal. This paper is concerned with the
digital ECG form only.

II. THE NONLINEAR IFS (NIFS)

The IFS data compression is realized through finding a
set of affine transforms between range pool and domain
pool. The role of the affine transform is to fit specific range
blocks with the domain blocks optimally. The compression
performance is directly decided by the capability of the aff-
ine transform that models the signal. The current transform
used in the IFS is a linear affine transform. It may model per-
fectly some signals which have strict inherent linear relation-
ship (such as the Cantor set, Koch curve, Sierpinski carpet,
and Julia set) [8]. Unfortunately, many signals in real life
have relationships that are more complicated than linear. To
model such signals, the linear affine transform is inadequate.
Image compression by the IFS fractal method is an example
of how difficult it is to find a suitable mapping between a
range block and the domain blocks. A complicated scheme
that requires a point-by-point search combined with a varia-
ble size of the domain blocks is necessary to find a reasona-
ble mapping, even though it may fail occasionally. This
transform causes two problems: (i) poor compression per-
formance and (ii) a very time-consuming search.

Instead, a generalized transform which may represent an
arbitrary function is needed to model such complicated sig-
nals. For a one-dimensional signal , a generalized trans-
form is defined as

(3)

where the coefficienta is limited to the range to guar-
antee contraction of signals in time. If is also a con-
tractive transform, then (3) satisfies the convergence
condition of the IFS.

To find an appropriate , it is not sufficient to use
the convergence condition only. According to Taylor’s
remainder formula, a function may be expanded as akth
order polynomial format if its first derivatives are con-
tinuous and itskth derivative exists [9]. Thus, akth-order
polynomial is used to approximate the

, (4)

where coefficients is decided by the function
according to Taylor’s remainder formula. Since is
unknown, it may be determined with the inverse procedure
by finding the . The definition of the strange attractor of
objects gives a way of how to find the . To obtain the

strange attractor of the object, it is reasonable to assume 

(5)

where  is mapped to  under the condition

(6)

Equations (4), (5), and (6) constitute our nonlinear co
traction transform for finding the strange attractor of th
object. When the expansion orderk is equal to 1, the nonlin-
ear transform becomes the traditional affine transfor
Therefore, one sees that the nonlinear transform may lead
more flexible mappings between the range blocks and
domain blocks than the linear affine transform. Such flexib
ity may result in two advantages: (i) improving compressio
performance and (ii) speeding up the search.

We shall now discuss how to use the least square er
technique to determine the coefficients in (4) and (6). For
lossless fractal compression technique, a transform must
found to satisfy (5) with a measured signal exactly. In pra
tice, it is reasonable to use an approximation to replace
strict equality condition between and in the
lossy fractal compression. Then there is an error

(7)

where  is the length of the range block.
A set of optimal transform coefficients can be obtaine

by applying the least square error approach on (7).

III. EXPERIMENTAL RESULTS ANDANALYSIS

The new nonlinear IFS transform is applied to compre
a one-dimensional ECG signal. To compare compress
performance, the traditional IFS technique is also impl
mented. The performance of a compression algorithm
dependent mainly on two parameters: compression ratio a
reconstruction (distortion) error. The compression ratio, Rcr,
is defined as [10]

(8)

where and represent the original and th
compressed signal, respectively. Their corresponding sam
lengths areN and .

A common distortion measure is the following percen
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root-mean-square difference (PRD) to measure recon-
structed error of signals [11]

% (9)

where represents the reconstructed signal. In the
processing of reconstruction error, it is found that thePRD
will change when the signals shift along amplitude direction.
A normalizedPRDmeasure is proposed in [12] for ECG sig-
nals

% (10)

Notice that although (9) is not a good error measure in
ECG data compression, it is used in this paper to measure
reconstruction error for convenience to compare our results
with other research.

Fig. 1  Distribution of coefficients (a)  and (b) .

Prior to the calculation of the compression ratio and
reconstruction error, the coefficients in must first be
quantized. Figure 1 shows two distributions of coefficients

and with the ECG signal sampled at 360 Hz wit
11 bit resolution, as taken from the MIT-BIH ECG databas
[13]. We do experiment using the ECG data contained in t
file, x_100.txt, which has a 10-minute recording of the EC
signal. The Lloyd-Max nonuniform quantizer is used t
quantize the coefficients because their distribution is close
a Laplacian [14].

To improve compression performance, the coefficienta
is set to where , to increase the chance f
finding the optimal mapping. The length of range blocks
also a variable, changing according to with the integel
varying from 2 to 6. Figures 2(a) and (b) give the size distr
butions of range blocks for the traditional and the nonline
IFS (NIFS) approach, respectively. The NIFS can use t
most frequent range block size of 32 sample points to mo
the ECG signal compared with 4 sample points used by
linear affine transform. The size distributions of range bloc
show that more large range blocks are found by the NIF
than by the traditional IFS, thus leading to an improved com
pression ratio. In our experiment, the mean range size
about 30.0 for the NIFS and 26.9 for the IFS. It demonstrat
that the nonlinear transform can model signals more flexib

Fig. 2 Range block size distributions for (a) the traditional affine transfor
and (b) the nonlinear transform.

Figures 3(a) and (b) give address distribution of the op
mally mapped domain blocks found by the traditional IF
and the NIFS approach, respectively. The address distri
tion of the mapped blocks given by the NIFS demonstrat
more concentrated distribution around the first point of th
search. Compared with full distribution in the segment
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1024 points of the IFS, the NIFS gives distribution of
domain block address within 110 point range. It shows that
the optimal mapping can found by searching fewer domain
blocks. This can be useful in developing a fast search algo-
rithm in the future.

Fig. 3  Address distribution of the optimally mapped domain blocks found
by (a) the traditional and (b) the NIFS approach.

Figures 4(a), (b), and (c) show the original ECG signal,
its reconstruction, and the reconstructed error. From these
figures, one can see that the NIFS compresses and recon-
structs the ECG signal extremely well. The new technique
has the remarkable property of modelling the QRS complex
of the ECG signal almost perfectly, which is a difficult issue
for the linear affine transform and the orthogonal transform
[6]. The reconstruction error is limited to a small range only.
It is mainly due to the noise in the signal.

Table 1 shows the influence of the orderk of the Taylor
series expansion and quantization resolution on the compres-
sion performance of the ECG signal. By changing the expan-
sion order from 1st to 4th, as well as the resolution of the
quantizer from 7 bits to 14 bits, variousPRD and Rcr are
obtained. By monitoring the changes among them, optimal
parameters for the NIFS on the ECG signal can be found.

Table 1 shows that when the resolution increases, the
Rcr increases. ThePRD is controlled by the error threshold.
When quantizer takes more than 11 bits, thePRD and the
Rcrchange little with the resolution increasing further. In the
future, we will use different quantizer for different coeffi-
cient.

Fig. 4  The ECG signal compression: (a) original ECG signal,
(b) reconstructed signal, and (c) reconstructed error.

One may predict that the expansion order increase w
result in aPRDdecrease because of the more powerful mo
elling ability of the NIFS. However, a higher order results i
more coefficients, thus leading to a lower compression rat
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Table 1: Compression performance investigation of the NIFS with
quantization resolution and polynomial expansion change on the ECG sig

Resolution
(bit)

k=1 k=2 k=3 k=4
PRD Rcr PRD Rcr PRD Rcr PRD Rcr

7 6.0% 9.1 5.8% 6.0 5.6% 3.0 5.5% 2.2
8 5.8% 9.0 5.4% 5.4 5.7% 4.9 5.7% 4.0
9 5.8% 9.5 5.7% 8.0 5.6% 6.1 5.8% 5.3
10 5.7% 10.5 5.6% 7.6 5.3% 6.0 5.8% 6.1
11 5.8% 10.6 5.9% 9.9 5.8% 7.9 5.9% 7.4
12 5.8% 10.7 5.8% 9.9 5.9% 8.6 5.8% 7.7
13 5.9% 10.6 5.8% 10.2 6.0% 9.2 6.0% 8.3
14 5.8% 11.1 5.8% 10.2 5.7% 9.2 5.4% 8.4

Threshold 0.0115 0.0117 0.0123 0.0130
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Consequently, there must be a trade-off between theRMS
and theRcr for choosing the optimal orderk. Although Table
1 demonstrates that the change of expansion order has
almost no influence on thePRD(because thePRDis control-
led by the error threshold), it results in differentRcr. The
expansion order of 2 may compete with the compression
ratio achieved by the linear IFS.

It was found that the NIFS achieves almost the same
compression ratio as the traditional IFS under the same
reconstruction error in the ECG signal compression. When

%, ∅ien and Nårstad achieved 6.0:1 with their
IFS ECG compression by orthogonal transform [6]. With the
optimal choice of order 2 and 14 bit nonuniform quantizer,
we get the compression ratio about 11.1:1 for the affine
transform and about 10.2:1 for the NIFS.

IV. CONCLUSION

In this paper, we use a nonlinear IFS (NIFS) transform
to compress a one-dimensional ECG signal. The first impor-
tant issue in this technique is the convergence of the strange
attractor reconstruction. We have seen that the signal recon-
struction is successful. The experiment shows that the non-
linear approach may compete with the traditional IFS
technique for the ECG signal compression. With the optimal
choice of order and nonuniform quantizer, the extended
transform achieves a maximal compression ratio of 10.2:1,
which is higher than that of 6.0:1 obtained by∅ien and
Nårstad under the samePRD.

Another advantage of the new extended transform is that
it can model the QRS complex of the ECG signal very well,
which has been a problem for the affine transform and the
orthogonal transform in fractal compression. Fewer blocks
are used to model the ECG signal by the NIFS than that by
the linear IFS. It reveals that the NIFS technique has a more
powerful modelling ability.

The address distribution of the optimally mapped
domain blocks around the first point in the search in Fig. 3(b)
has important significance. It can be employed to speed up
the search of finding optimal mappings between the range
blocks and domain blocks. In another paper, we describe
how to use the extended transform to develop a fast NIFS
algorithm.
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